Le forum SOS-MATH interrompra son service de modération des messages tous les dimanches de 14h00 à minuit.
Bien entendu, la consultation du forum reste toujours possible.

exercice sur les nombres complexes

Répondre

Question anti-spam
Cette question est malheureusement nécessaire pour éviter aux robots d'effectuer du SPAM sur ce forum. Après avoir répondu à celle-ci, cliquez sur le bouton "Envoyer" ci-dessous.
En cas de problème, merci de prendre contact avec l'administrateur.

 
Quel est le résultat de cette addition ?
   

Si vous souhaitez joindre un ou plusieurs fichiers (1 Mo maximum chacun), complétez les indications suivantes.
Attention : cette fonctionnalité ne doit être utilisée que pour insérer des dessins ou des figures géométriques dans votre message.

Étendre la vue Revue du sujet: exercice sur les nombres complexes

Re: exercice sur les nombres complexes

Message par sos-math(27) le Mar 29 Mai 2018 20:37

Bonjour Angélique,
J'ai déplacé le sujet vers la catégorie 'terminale' car je ne pense pas que tu sois en seconde.
Je n'ai pas le texte de l'exercice, c'est donc délicat de te corriger.
Cependant, si \(z_A=2e^{i \frac{5\pi}{6}}=[2; \frac{5\pi}{6}]\) et \(z_B=4e^{i \frac{\pi}{3}}=[4; \frac{\pi}{3}]\)

Le module de \(z_A\) n'est donc pas \(\sqrt{2}\)
du coup ce que tu propose :
Za: -3–√/2–√= -π/6 pour cos teta et 2–√/2=π/4 pour sin teta
est faux , attention, tu mélange la mesure de l'angle et la valeur de son cosinus et son sinus.. Il faut revoir les formules et leur utilisation.

en tout cas, il faut nous préciser les questions si tu veux une aide plus précise ... à bientôt

exercice sur les nombres complexes

Message par angelique le Mar 29 Mai 2018 14:06

bonjour j'ai besoin d'aide sur cette exercice
je l'ai commencer si vous pouvez me dire si ca va merci
1) j'ai trouver comme coordonnée A ( -1.73;1) et pour B(2;3.46)
2) pour determiner la forme trigonometrique de Za:
module de Z =\(\sqrt{2}\)

ensuite j'utilise la formule trigonometrique qui est Z=module de Z(cos teta+ i sin teta)
donc qui fait pour Za: -\(\sqrt{3}\)/\(\sqrt{2}\)= -\(\pi\)/6 pour cos teta et \(\sqrt{2}\)/2=\(\pi\)/4 pour sin teta

pour determiner la forme trigonometrique de Zb :
module de Z=\(\sqrt{10}\)
ensuite j'utilise la formule trigonometrique qui est Z=module de Z(cos teta+ i sin teta)
donc qui fait pour Zb:2/\(\sqrt{10}\)= là je suis bloquer pour trouver cos teta
2\(\sqrt{3}\)/\(\sqrt{10}\)= la je suis bloquer pour trouver sin teta
et en fin je ne comprend pas comment trouver o pour le triangle
merci de m'aider a voir si j'ai faut quelque part merci car je usi perdu
Fichiers joints

Téléchargez la figure ici.


Haut