Le forum SOS-MATH interrompra son service de modération des messages tous les dimanches de 14h00 à minuit.
Bien entendu, la consultation du forum reste toujours possible.

Congruence

Répondre

Question anti-spam
Cette question est malheureusement nécessaire pour éviter aux robots d'effectuer du SPAM sur ce forum. Après avoir répondu à celle-ci, cliquez sur le bouton "Envoyer" ci-dessous.
En cas de problème, merci de prendre contact avec l'administrateur.

 
Recopier (sans espace) les chiffres entourés du plus petit au plus grand.
   

Si vous souhaitez joindre un ou plusieurs fichiers (1 Mo maximum chacun), complétez les indications suivantes.
Attention : cette fonctionnalité ne doit être utilisée que pour insérer des dessins ou des figures géométriques dans votre message.

Étendre la vue Revue du sujet: Congruence

Re: Congruence

Message par sos-math(21) le Mar 12 Juin 2018 06:58

Bonjour,
les nombres entiers peuvent être congrus à 0, 1, 2 ou 3 modulo 4 par définition d'une congruence modulo 4 (reste d'une division euclidienne par 4)
donc si \(p\equiv 0\,[4]\), alors \(p^2\equiv 0^2\equiv 0\,[4]\)
si \(p\equiv 1\,[4]\), alors \(p^2\equiv 1^2\equiv 1\,[4]\)
si \(p\equiv 2\,[4]\), alors \(p^2\equiv 2^2\equiv 0\,[4]\)
si \(p\equiv 3\,[4]\), alors \(p^2\equiv 3^2\equiv 1\,[4]\)
Donc un carré est congru à 0 ou 1 modulo 4 donc une somme de 2 carrés est congrue à ... ou bien ... ou bien ... modulo 4.
Or \(4n+3\) est congru à ... modulo 4 d'où l'impossibilité.
Bonne conclusion

Congruence

Message par Thomas le Dim 10 Juin 2018 12:33

Bonjour,

Je fais un exercice sur les congruences. Voici l'exercice.
Pour la question 1, pas de problèmes particuliers.
Mais pour la question 2, j'ai commencé à faire un tableau ... Je ne vois pas comment continuer.

Merci d'avance de votre aide.
Fichiers joints
34875707_1891316074500419_2139894758615547904_n.jpg
Capture.GIF

Haut