Le forum SOS-MATH interrompra son service de modération des messages tous les dimanches de 14h00 à minuit.
Bien entendu, la consultation du forum reste toujours possible.

Fonctions

Retrouver tous les sujets résolus.

Fonctions

Messagepar Jélika le Mar 31 Oct 2017 12:09

Bonjour,

Je viens de terminer mon DM, et j'aimerai avoir une correction pour être sûr de mes réponses.

Soit f la fonction définie sur ] 2;+infini [ par : f(x) = x^2 - 3x + 4 / x-2
On note C la courbe représentative dans un repère dans un repère (O;I,J).

1. Montrer que l'on a f(x) = x-1 + 2/x-2
x-1 + 2/( x-2)
=(( x-1 )( x-2 )) / ( x-2 ) + 2/( x-2 )
=( x^2 - 3 + 2 ) / ( x-2 )
=f(x)
Donc f(x) = x-1 + 2/( x-2)

2) Soit delta la droite représentative de la fonction g définie par
g(x) = x - 1 dans le même repère.
On considère la fonction [i]delta
définie par d(x) = f(x) - g(x).
Etudier le signe de d(x) selon les valeurs de x.

On sait que f(x)= x-1 + 2/(x-2) et g(x)= x-1
donc d(x)= x-1+2/(x-2) - (x-1)
d(x)= x-x-1+1+2/(x-2)
d(x)= 2/(x-2)

Comme 2 est positif, d(x) aura le même signe que le dénominateur

3) En déduire la position de la courbe C par rapport à la droite delta

Si x appartient à ]-infini; 2 [ alors C est au dessus de la droite
Si x appartient à ]2;+infini [ alors C est en dessous de la droite

4) Tracer proprement la courbe C et la droite sur une feuille, à vous de déterminer
le repère.

J'ai tracer la courbe mais sa signifie quoi " à vous de déterminer le repère " ?
C'est le repère (O;I,J) ?

5) Résoudre par calcul f(x)<5

( x^2 - 3x + 4 ) / ( x-2) < 5
x^2 - 3x + 4 - 5*( x-2 ) / ( x-2 ) < 0
x^2 - 3x + 4 - 5x + 10 / ( x-2 ) < 0
x^2 - 8x + 14 / ( x-2 ) < 0
Le fait que x−2 soit positif te permet de ramener la résolution de l'inéquation à x^2 - 8x +14< 0 :
si un quotient est négatif et que son dénominateur est positif, alors le numérateur est négatif.

x^2 - 8x + 14<0
( x - 4 )^2 - 2 < 0
si on veut résoudre cette inéquation dans ]2;+∞[, il faut passer le 2 de l'autre côté et utiliser la propriété liée aux paraboles :

V pour racine carré

-V2 < x < V2
-V2 -4 < x < V2 -4
-2 -4 < x > 2 -4
2 < x < 6

Merci d'avance.
Jélika
 

Re: Fonctions

Messagepar SoS-Math(33) le Mar 31 Oct 2017 12:30

Bonjour Jélika,

2)
Comme 2 est positif, d(x) aura le même signe que le dénominateur,
il te faut étudier le dénominateur sur l'intervalle de définition de la fonction ] 2;+infini [

3) En déduire la position de la courbe C par rapport à la droite delta
Il y a un seul cas ] 2;+infini [


4) Tracer proprement la courbe C et la droite sur une feuille, à vous de déterminer
le repère.
Cela veut dire que tu es libre de choisir les unités de graduations , en les prenant le mieux adaptées possibles

5) Résoudre par calcul f(x)<5

x^2 - 8x + 14<0
( x - 4 )^2 - 2 < 0
si on veut résoudre cette inéquation dans ]2;+∞[, il faut passer le 2 de l'autre côté et utiliser la propriété liée aux paraboles :
Il te faut reprendre cette question

\(-\sqrt{2}\) < x-4 < \(\sqrt{2}\)

Je te laisse reprendre le calcul
SoS-Math(33)
 
Messages: 2147
Inscription: Ven 25 Nov 2016 14:24

Re: Fonctions

Messagepar Jélika le Mar 31 Oct 2017 13:29

2) x-2 = 0
x = 2
Le dénominateur est positif, donc d(x) est positif.

3) C est en-dessous de la droite dans l'intervalle ] 2;+infini [

5) -V2 < x-4 < V2
-2 + 4 < x < 2 + 4
2 < x < 6
Jélika
 

Re: Fonctions

Messagepar SoS-Math(33) le Mar 31 Oct 2017 13:39

2)\(x \in ]2; +\infty[\) donx \(x-2 >0\)

5) Attention tu as oublié la racine carrée tu dois obtenir
\(-\sqrt{2} < x-4 < \sqrt{2}\)
\(-\sqrt{2} + 4 < x < \sqrt{2} + 4\)
SoS-Math(33)
 
Messages: 2147
Inscription: Ven 25 Nov 2016 14:24

Re: Fonctions

Messagepar Jélika le Mar 31 Oct 2017 13:51

Merci beaucoup pour votre aide !
Jélika
 

Re: Fonctions

Messagepar SoS-Math(33) le Mar 31 Oct 2017 13:52

Bonne journée
A bientôt sur le forum
SoS-math
SoS-Math(33)
 
Messages: 2147
Inscription: Ven 25 Nov 2016 14:24


Retourner vers Forum 2°

 

cron