Le forum SOS-MATH interrompra son service de modération des messages tous les dimanches de 14h00 à minuit.
Bien entendu, la consultation du forum reste toujours possible.

différence entre AM=MB et vect(AM) = vect(MB)

Retrouver tous les sujets résolus.

différence entre AM=MB et vect(AM) = vect(MB)

Messagepar léo le Jeu 7 Déc 2017 13:34

Bonjour

je ne comprends pas très bien la propriété sur les vecteurs :

M est le milieu du segment [AB] si, et seulement si \(\overrightarrow{AM}= \overrightarrow{MB}\)

Pouvez vous m'aidez ? s'il vous plait
léo
 

Re: différence entre AM=MB et vect(AM) = vect(MB)

Messagepar SoS-Math(33) le Jeu 7 Déc 2017 18:44

Bonjour léo,
l'égalité vectorielle veut dire :
1) que les droites (AM) et (BM) sont parallèles et comme elles ont en commun le point M elles sont confondues donc A,B,M sont alignés.
2) que les longueurs AM et MB sont égales.

Il en résulte que M est à égale distance de A et de B et qu'en plus il appartient à (AB) donc c'est le milieu.
SoS-Math(33)
 
Messages: 1761
Inscription: Ven 25 Nov 2016 14:24

Re: différence entre AM=MB et vect(AM) = vect(MB)

Messagepar léo le Jeu 7 Déc 2017 19:54

Bonsoir ( merci de m'avoir répondu )


Est ce que l'on peut dire que l'on a un parallélogramme aplati ?



Screen Shot 2017-12-07 at 19.51.58.png
léo
 

Re: différence entre AM=MB et vect(AM) = vect(MB)

Messagepar léo le Jeu 7 Déc 2017 19:56

d'après la définition de deux vecteurs égaux
Deux vecteurs sont égaux si, et seulement si ils forment un parallélogramme
la translation de vecteur AB transforme A en B
et cette même translation transforme le point C en D
léo
 

Re: différence entre AM=MB et vect(AM) = vect(MB)

Messagepar SoS-Math(7) le Jeu 7 Déc 2017 23:37

Bonsoir Léo,

Compliqué de voir ici un parallélogramme aplati dans la mesure où l'on n'a que 3 points.
Pour comprendre cette propriété : M est le milieu du segment [AB] si, et seulement si \(\vec{AM}=\vec{MB}\)
Le plus "parlant" est, peut-être, de revenir à la définition d'un vecteur.
Le vecteur \(\vec{AM}\) est un objet mathématique qui comporte trois informations (les trois caractéristiques de la translation qui fait correspondre au point A le point M) :
• une direction (ici la droite (AM) et donc le réseau de toutes les droites parallèles à (AM)) ;
• un sens (ici celui de A vers M) ;
• une longueur (appelée norme) (ici la longueur AM).

Dans le cas de \(\vec{AM}=\vec{MB}\) cela signifie que les droites (AM) et (MB) sont parallèles mais comme ces deux droites ont le point M en commun, cela signifie que ces deux droites sont confondues ; les point A, M et B sont alignés.
Les longueurs AM et MB sont égales et le sens de A vers M est le même que celui de M vers B. Ces trois conditions obligent le point M à être au milieu du segment [AB].

J'espère l'explication claire.
Bonne continuation.
SoS-Math(7)
 
Messages: 3914
Inscription: Mer 5 Sep 2007 12:04


Retourner vers Forum 2°