Le forum SOS-MATH interrompra son service de modération des messages tous les dimanches de 14h00 à minuit.
Bien entendu, la consultation du forum reste toujours possible.

DM sur le produit des racines d'un polynôme de degré 2

Retrouver tous les sujets résolus.

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(33) le Mer 10 Oct 2018 16:02

Oui ça montre la proportionnalité des deux fonctions et ainsi qu'elles ont les mêmes racines.
SoS-Math(33)
 
Messages: 1992
Inscription: Ven 25 Nov 2016 14:24

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar yann le Mer 10 Oct 2018 16:11

-

je sais que j'insiste beaucoup mais dans les démonstrations, je m'y perds à chaque fois

en fait je suis ce plan

étape 1 :
la fonction \(f_1(x) = 2x^2 - 3x + 1 = 0\)

étape 2 :
je dis que \(f_1(x)\) c'est aussi \(2 \times f_2(x)\)

étape 3 :

je reconnais \(f_2(x) = x^2 - \frac{3}{2}x + \frac{1}{2}\) dans le développement enfin je ne sais pas si je peux employer ce terme : " je reconnais dans le développement "


et j'en déduis etc....

-
yann
 

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(33) le Mer 10 Oct 2018 16:16

Oui,
étape 1 tu résous \(f_1(x)=0\)
étape 2 tu remarques que \(f_1(x)=2f_2(x)\)
étape 3 tu rédiges la phrase avec les équivalences
étape 4 tu conclus.
SoS-Math(33)
 
Messages: 1992
Inscription: Ven 25 Nov 2016 14:24

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar yann le Mer 10 Oct 2018 16:42

-

étape 1

\(\quad x_1, \quad x_2\) sont les racines de \(f_1(x) = 2x^2 - 3x + 1\)


étape 2

\(f_1(x) = 2 \times f_2(x)\)

ainsi \(2 \times f_2(x_1) <=> 2 \times \left(x_1^2 - \frac{3}{2}x_1 + \frac{1}{2}\right) = 0\)

étape 3

je rédige la phrase avec les équivalences

\(2 \times \left(x_1^2 - \frac{3}{2}x + \frac{1}{2}\right) = 0\) <=> \(x_1^2 - \frac{3}{2} x_1 + \frac{1}{2} = 0\) <=> \(f_2(x_1) = 0\)

donc \(x_1\) est bien racine de \(f_2(x)\)


pareil avec \(x_2\)

-
yann
 

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(34) le Mer 10 Oct 2018 16:50

Quelques détails :

2*f2(x1) = 0 dans l'équivalence de l'étape 2.
il manque l'indice 1 à un endroit dans l'étape 3, x1 et pas x.

Tu as compris sinon, mais tu pouvais faire plus simple, comme indiqué à quelques reprises précédemment, notamment en mettant des x partout à la place de x1, ce qui indique que tes équations sont équivalentes et donc ont les mêmes racines (solutions)
SoS-Math(34)
 
Messages: 281
Inscription: Ven 17 Nov 2017 09:31

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar yann le Mer 10 Oct 2018 17:23

-

oui, je sais , je peux faire plus simple en mettant \(x\) partout

là, en fait j'essaie de prendre des automatismes, comme j'ai un peu le temps aujourd'hui

étape 1 : je remarque que \(f_1(x) = 2 \times f_2(x)\)

\(2x_2 - 3x + 1 = 2 \left(x^2 - \frac{3}{2}x + \frac{1}{2}\right)\)

Donc \(f_1(x) = 2 \times f_2(x)\)

étape 2 :

\(x_1, \quad x_2\) sont bien les racines de \(f_1(x)\)


étape 3 :


donc \(2 \times \left(x_1^2 - \frac{3}{2}x_1 + \frac{1}{2}\right) = 0\) <=> \(\left(x_1^2 - \frac{3}{2}x_1 + \frac{1}{2}\right) = 0\)<=>\(f_1(x_1) = 0\) et j'en déduis que \(x_1\) est également racine de \(f_2(x)\)


-
yann
 

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(34) le Mer 10 Oct 2018 17:34

si tu veux rédiger ainsi, cela fonctionne.

bonne continuation.
SoS-Math(34)
 
Messages: 281
Inscription: Ven 17 Nov 2017 09:31

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar yann le Mer 10 Oct 2018 18:01

-

pour la 2 ) Calculer la somme et le produit des racines. Que remarquez-vous ? On pourra comparer ces valeurs aux coefficients de \(f_1(x)\) et \(f_2(x)\) des polynômes ainsi qu'étudier les possibles liens avec le système \(\begin{vmatrix}
u + v = S\\
u \times v = P
\end{vmatrix}\)

pour le premier cas \(2x^2 - 3x +1\)

a = 1
b = -3
c = 1

pour trouver \(\frac{3}{2}\) avec les lettres a,b et c et bien j'ai dit qu'il faut prendre \(- b\)

mais là, encore je sais pas trop ce que le professeur attend comme réponse

-
yann
 

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(34) le Mer 10 Oct 2018 21:48

a n'est pas égal à 1...
calcul x1 + x2 somme des racines.tu pourras conjecturer une formule qui donne x1+x2 avec certains des coefficients a,b,c
calcule x1*x2 produit des racines. tu pourras conjecturer une formule qui donne x1*x2 avec certains des coefficients a,b,c
Pour le reste, plusieurs pistes ont déjà été données dans les post précédents.
je t'invite à les relire attentivement.

bonne recherche
sosmaths
SoS-Math(34)
 
Messages: 281
Inscription: Ven 17 Nov 2017 09:31

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(34) le Mer 10 Oct 2018 21:50

En complément la vidéo suivante peut t'aider (pour vérifier les calculs de la suite de l'exercice)
https://www.youtube.com/watch?v=_dh-VBbBIiQ
SoS-Math(34)
 
Messages: 281
Inscription: Ven 17 Nov 2017 09:31

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar yann le Ven 12 Oct 2018 17:44

Bonjour Sos math (34 )

Je vous remercie pour l'aide , pour la vidéo , très pédagogique !!!

L'aide disponible sur votre site a été le seul moyen pour moi de rendre mon DM, merci à sos math( 33) à sos math (31) à sos math (9) pour l'aide.




pour la 2 ) Calculer la somme et le produit des racines. Que remarquez vous ? On pourra comparer ces valeurs aux coefficients de \(f_1(x)\) et \(f_2(x)\)
et ainsi qu'étudier les possibles liens avec le système \(\left\lbrace\begin{matrix} u + v = S\\ u \times v = P\end{matrix}\right.\)


j'ai mis : les coefficients de \(2x^2 - 3x + 1\) c'est à dire les coefficients \(b = - 3\) et \(a = 1\) ne permettent pas d'avoir la somme

et la somme s'obtient en faisant : \(- \frac{b}{a}\)

\(a = 2, b = -3 \quad \quad\) alors \(\quad -\frac{b}{a} = \frac{-b}{a} = \frac{-(-3)}{2} = \frac{3}{2}\)


j'espère que c'est bon
-
yann
 

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(34) le Ven 12 Oct 2018 17:50

Bonjour Yann,

Précise d'abord la valeur de x1 + x2 et calcule ensuite -b/a en effet.
Tu constates que tu as le même résultat donc tu peux émettre une conjecture.
La suite de l'exercice concerne la démonstration pour la somme et le produit.

Bonne suite de recherche
Sosmaths
SoS-Math(34)
 
Messages: 281
Inscription: Ven 17 Nov 2017 09:31

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar yann le Ven 12 Oct 2018 18:26

-
oui, je trouve \(x _1 + x_2 = \frac{3}{2}\quad\quad\)\(a = 2, b = -3 \quad \quad\)\(-\frac{b}{a} =\frac{3}{2}\)

je constate que j'ai le même résultat

Ainsi :

\(x_1 + x_2 = \frac{3}{2}\) <=> \(x_1 + x_2 = -\frac{b}{a}\)


-
yann
 

Re: DM sur le produit des racines d'un polynôme de degré 2

Messagepar SoS-Math(30) le Ven 12 Oct 2018 20:00

Bonsoir Yann,

C'est bien cela. Tu obtiens la conjecture : \(x_{1}+x_{2}=-\frac{b}{a}\)

SoSMath
SoS-Math(30)
 
Messages: 564
Inscription: Lun 12 Oct 2015 10:32

Précédente

Retourner vers Forum 1°