Le forum SOS-MATH interrompra son service de modération des messages tous les dimanches de 14h00 à minuit.
Bien entendu, la consultation du forum reste toujours possible.

Cadan

Retrouver tous les sujets résolus.

Cadan

Messagepar caramel76 le Mer 11 Sep 2019 16:57

Bonjour, je fais appel à vous parce que je suis complètement perdu ! Je ne comprends absolument rien ! Serait-il possible d'éclairer ma lanterne ?

Voici l'énoncé :
On considère (E): x^3=px+q dans laquelle l'inconnue est x, et p et q désignent des nombres réels.

1) Est-il possible que l'ensemble des solutions de (E) soit [-1;1] ? Justifier.
J'ai répondu : Non, ce n'est pas possible car si l'on prend 0, chiffre appartenant à cet intervalle nous obtenons 0= p0+q
0=0+q or ce n'est pas possible car q est ajouté or n'importe quel nombre ajouté à 0 hormis lui même est différent de 0. 0 est un contre exemple donc ce n'est pas possible.

2) On précise que quelque soit le nombre réel a, l'équation x^3=a d'inconnue x possède une seule solution réelle. Dans le cas où a est positif, on la note racine cubique de a (désolé je sais pas comment l'écrire ici). Les règles de calcul avec la racine sont celles de la racine carrée.

Cardan a montré que : si p>0, q>0 et D = (q/2)²-(p/3)² alors le réel X =(je vous le met en pièce jointe je n'arrive pas du tout à l'écrire) est une solution de l'équation (E) x^3=px+q

a) Développer (a+b)^3 puis X^3
J'ai fais :
(a+b)^3 = (a+b)² (a+b)
= (a²+b²+2ab) (a+b)
= a^3+3ab²+3a²b+b^3

En revanche pour X j'ai bien remplacé D par la valeur donné et tout mais pour le calcul...
Pouvez-vous m'aider svp ?
Fichiers joints
Capture.JPG
Capture.JPG (1.73 Kio) Vu 35 fois
caramel76
 

Re: Cadan

Messagepar SoS-Math(31) le Mer 11 Sep 2019 20:00

Bonjour caramel76,
1) x = 0 n'est solution que si q = 0.
2) Quelle est la question ? Je pense qu'il y a aussi un problème avec la pièce jointe.
SoS-Math(31)
 
Messages: 1127
Inscription: Lun 12 Oct 2015 10:33

Re: Cardan

Messagepar caramel76 le Jeu 12 Sep 2019 10:03

bonjour voici l'enonce exact:
On considère (E): x^3=px+q dans laquelle l'inconnue est x, et p et q désignent des nombres réels.

1) Est-il possible que l'ensemble des solutions de (E) soit [-1;1] ? Justifier.
J'ai répondu : Non, ce n'est pas possible car si l'on prend 0, chiffre appartenant à cet intervalle nous obtenons 0= p0+q
0=0+q or ce n'est pas possible car q est ajouté or n'importe quel nombre ajouté à 0 hormis lui même est différent de 0. 0 est un contre exemple donc ce n'est pas possible.
je n'y comprends rien
merci de m'eclairer
caramel76
 

Re: Cadan

Messagepar caramel76 le Jeu 12 Sep 2019 10:12

et voici la seconde question
2) On précise que quelque soit le nombre réel a, l'équation x^3=a d'inconnue x possède une seule solution réelle. Dans le cas où a est positif, on la note racine cubique de a (désolé je sais pas comment l'écrire ici). Les règles de calcul avec la racine sont celles de la racine carrée.

Cardan a montré que : si p>0, q>0 et D = (q/2)²-(p/3)² alors le réel X =(je vous le met en pièce jointe je n'arrive pas du tout à l'écrire) est une solution de l'équation (E) x^3=px+q

a) Développer (a+b)^3 puis X^3
J'ai fais :
(a+b)^3 = (a+b)² (a+b)
= (a²+b²+2ab) (a+b)
= a^3+3ab²+3a²b+b^3

En revanche pour X j'ai bien remplacé D par la valeur donné et tout mais pour le calcul...
Pouvez-vous m'aider svp ?
Fichiers joints
Capture.JPG
Capture.JPG (1.73 Kio) Vu 20 fois
caramel76
 

Méthode de Cardan

Messagepar Bosseurardent76 le Jeu 12 Sep 2019 20:26

Bonjour, j'ai du mal avec une exercice et j'aurais besoin de votre aide ...
Voici l'énoncé : Peut-on utiliser la formule de Cardan pouur donner une solution exacte de l'équation x^3=3x+1 ? Justifier. Cette équation a t'elles des solutions réelles ? Justifier

J'ai mis :
Non, on ne peut pas utiliser la formule de Cardan pour trouver une solution exacte. Je n'ai aucune idée de la justification...
Pour la deuxième partie, je partierais sur :
x^3=3x+1
x^3-3x-1=0
Mais après comment je peux faire ?
Bosseurardent76
 

Re: Cadan

Messagepar sos-math(21) le Ven 13 Sep 2019 07:52

Bonjour,
êtes vous sûr(e) que l'on parle de l'intervalle \([-1\,;\,1]\) ? Cela ne semble pas cohérent pour une solution d'équation...
Je penserai plutôt à \(\left\lbrace -1\,;\,1\right\rbrace\) et donc remplacer \(x\) par -1 puis par 1 :
- si \(x=1\) est une solution, on a \(1=p+q\)
- si \(x=-1\), est une solution, on a \(-1=-p+q\)
En additionnant, on a \(q=0\) et \(p=1\)
Par ailleurs, votre argument :
0=0+q or ce n'est pas possible car q est ajouté or n'importe quel nombre ajouté à 0 hormis lui même est différent de 0

n'est pas correct puisque \(q=0\) permet d'avoir une égalité vraie : \(p\) et \(q\) sont des nombres réels sans qu'il n'y ait aucune condition sur eux, donc ils peuvent valoir 0.
Pour le reste, il faut effectivement calculer le cube de \(X\) et voir s'il est égal à \(pX+q\).
Pour faciliter le travail, on vous a fait développer le cube d'une somme \((a+b)^3=a^3+3a^2b+3ab^2+b^3 = a^3+(a+b)\times 3ab+b^3\)
Si vous remplacez \(a\) par \(\sqrt[3]{\dfrac{q}{2}+\sqrt{D}}\) et \(b\) par \(\sqrt[3]{\dfrac{q}{2}-\sqrt{D}}\), cela doit fonctionner mais prenez bien la forme que je vous propose à la fin du développement du cube.
J'ai tout de même un doute sur l'expression de \(D\) : pouvez-vous vérifier ?
Bon calcul
sos-math(21)
 
Messages: 7382
Inscription: Lun 30 Aoû 2010 11:15

Re: Méthode de Cardan

Messagepar sos-math(21) le Ven 13 Sep 2019 07:57

Bonjour,
que vous a-t-on dit sur la formule de Cardan ? Quel est le contexte de l'exercice ? Y a -t-il d'autres questions avant celles-ci ?
Une seule question de manière abrupte sur la méthode de Cardan semble surprenante pour le niveau terminale...
Pour les formules de Cardan, il y a des conditions portant sur \(p\) et \(q\), elles s'obtiennent par des calculs plutôt compliqués.
Précisez votre demande,
Bonne continuation
sos-math(21)
 
Messages: 7382
Inscription: Lun 30 Aoû 2010 11:15

Re: Méthode de Cardan

Messagepar Bosseurardent76 le Ven 13 Sep 2019 09:32

On nous donne : si p>0, q>0 et D = (q/2)²-(p/3)^3 >0 alors le réel X = (je vous le mets en pièce jointe je n'arrive pas à l'écrire) est une solution de l'équation x^3=px+q
Et avec ça on nous demande si on peut utiliser la formule de Cardan pour donner une solution exacte de l'équation x^3=3x+1 puis si cette équations a des solutions réelles.
Fichiers joints
Capture.JPG
Capture.JPG (1.73 Kio) Vu 15 fois
Bosseurardent76
 

Re: Cadan

Messagepar caramel76 le Ven 13 Sep 2019 09:36

Déjà merci, pour la question 1 j'ai trouvé grâce à la résolution d'un système. Ici, on nous dit que D= (q/2)²-(p/3)^3 >0
caramel76
 

Re: Méthode de Cardan

Messagepar sos-math(21) le Ven 13 Sep 2019 17:31

Bonjour,
j'ai fusionné le sujet avec un autre sujet portant sur la méthode de Cardan.
sos-math(21)
 
Messages: 7382
Inscription: Lun 30 Aoû 2010 11:15

Re: Cadan

Messagepar sos-math(21) le Ven 13 Sep 2019 17:34

Pour la suite, il faut bien remplacer \(x\) par l'expression donnée dans l'équation \(x^3=px+q\).
Le calcul est assez technique mais en y allant progressivement, on doit s'en sortir.
sos-math(21)
 
Messages: 7382
Inscription: Lun 30 Aoû 2010 11:15

Re: Cadan

Messagepar Bosseurardent76 le Ven 13 Sep 2019 19:28

Dommage de pas avoir eu votre réponse avant je viens de rendre ma copie ahaha, mais merci de l'aide ça m'aide à comprendre. Préparez vous, j'ai un autre dm tout frais que je vais attaquer ! x)
Bosseurardent76
 

Re: Cadan

Messagepar SoS-Math(9) le Sam 14 Sep 2019 08:49

Bon courage,
SoSMath.
SoS-Math(9)
 
Messages: 5964
Inscription: Mer 5 Sep 2007 12:10


Retourner vers Forum terminale

 

cron