Arrêt du service de modération des messages du forum SOS-MATH comme tous les dimanches de 14h à minuit.
Bien entendu, la consultation du forum reste toujours possible.

Dérivabilité d’une fonction

Retrouver tous les sujets résolus.

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(34) le Mer 2 Mai 2018 15:35

Bonjour Thomas,

Il faudrait qu'à chaque fois tu relises attentivement les aides qui te sont données, car tu en oublies certaines en route et donc tu reposes des questions pour lesquelles tu as déjà eu des pistes un peu plus haut.
Je reprends la réponse de mon collègue (voir image jointe) et celle que j'avais donnée ensuite.

1) Tu connais beta dont tu as calculé la valeur exacte précédemment.
2) alpha s'en déduit directement car alpha = 2/beta.
3) remplace alpha et beta par leurs valeurs dans les équations respectives...tu verras que tu dois obtenir la même équation dans chaque cas (c'est normal, le système d'inconnues alpha et beta est basé sur le fait que les deux tangentes recherchées sont confondues)

Suis le plan que je viens de te donner pour avancer.
Bonne recherche
Sosmaths
SoS-Math(34)
 
Messages: 218
Inscription: Ven 17 Nov 2017 09:31

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(34) le Mer 2 Mai 2018 15:41

je joins la réponse dont je te parlais, elle contient les deux équations de tangentes...
Fichiers joints
IMG_20180502_163106.jpg
SoS-Math(34)
 
Messages: 218
Inscription: Ven 17 Nov 2017 09:31

Re: Dérivabilité d’une fonction

Messagepar Thomas le Mer 2 Mai 2018 16:08

Bonjour,

Je comprends vos explications, mais je ne trouve pas les mêmes tangentes ...
Pourquoi ?
Fichiers joints
31753505_1874518459513514_5795665595487748096_n.jpg
Thomas
 

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(34) le Mer 2 Mai 2018 22:07

Tu devrais trouver le même résultat... sans doute as-tu un peu vite...
Aide : Combien vaut ln 1? ...
SoS-Math(34)
 
Messages: 218
Inscription: Ven 17 Nov 2017 09:31

Re: Dérivabilité d’une fonction

Messagepar Thomas le Jeu 3 Mai 2018 17:55

Bonsoir,

Je ne trouve pas mes erreurs de calcul ...
Je vous envoie une photo plus détaillé ...

Merci d'avance de vos explications.
Fichiers joints
31662260_1874988132799880_1809503411528269824_n.jpg
Thomas
 

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(34) le Jeu 3 Mai 2018 22:38

Bonsoir,

-2 alpha = 4/beta (tu avais oublié le -)
Par ailleurs, relis les messages et les pistes déjà données, car la photo que tu renvoies ne correspond pas à l'erreur en question. Reprends tes équations de tangentes et remplace alpha par sa valeur dans la 1ère, beta par sa valeur dans la deuxième. Je te l'écris à nouveau : combien vaut ln(1)? c'est une erreur sur cette valeur qui t'empêche d'obtenir les mêmes équations.

bonne recherche
sos maths
SoS-Math(34)
 
Messages: 218
Inscription: Ven 17 Nov 2017 09:31

Re: Dérivabilité d’une fonction

Messagepar Thomas le Ven 4 Mai 2018 19:00

Bonsoir,

ln(1) = 0, certes, mais je n'arrive toujours pas à trouver mon erreur.
Thomas
 

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(30) le Ven 4 Mai 2018 21:46

Reprends la fin avec \(\alpha =-\frac{2}{\beta }\).

SoSMath
SoS-Math(30)
 
Messages: 537
Inscription: Lun 12 Oct 2015 10:32

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(30) le Ven 4 Mai 2018 21:47

SoS-Math(30) a écrit:Reprends la fin avec \(\alpha =-\frac{2}{\beta }\).

ce qui provient de \(-2\alpha =\frac{4}{\beta }\)
SoS-Math(30)
 
Messages: 537
Inscription: Lun 12 Oct 2015 10:32

Re: Dérivabilité d’une fonction

Messagepar Thomas le Sam 5 Mai 2018 11:03

Bonjour,

Je détaille mes calculs sur la prochaine photo, mais je ne trouve toujours pas la même chose.
Fichiers joints
31936714_1875709766061050_4059728552763850752_n.jpg
Thomas
 

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(33) le Sam 5 Mai 2018 12:09

Bonjour,
je pense que tu fais une confusion, le \(\beta\) de la dernière question n'est pas le même que celui de la question précédente.
Ton équation donne \(\alpha^2 + 4ln(\frac{-2}{\alpha})-4=0\)
Si tu poses un changement de variable \(X=\frac{-2}{\alpha}\) ça donne \(\alpha = \frac{-2}{X}\)
tu obtiens : \((\frac{-2}{X}) ^2 + 4lnX-4=0\)
ce qui donne \(\frac{4}{X^2}+ 4lnX-4=0\) soit \(\frac{1}{X^2}+ lnX-1=0\)
Maintenant si tu utilises le résultat de la question précédente tu peux trouver X puis \(\alpha\) puis l'équation de la tangente.
Je te laisse poursuivre.
SoS-Math(33)
 
Messages: 1825
Inscription: Ven 25 Nov 2016 14:24

Re: Dérivabilité d’une fonction

Messagepar Thomas le Sam 5 Mai 2018 13:11

Cette fois-ci, je suis complètement perdu.
Il me semble que vous m'avez dit précédemment b = 1, car les questions avaient un ordre logique, mais ce n'est plus le cas maintenant ?
Pour autant ne me donnez pas à la démarche à suivre, s'il vous plaît, j'aimerai avoir davantage d'informations ...
Fichiers joints
31948799_1875750899390270_4202212014044479488_n.jpg
Thomas
 

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(33) le Sam 5 Mai 2018 13:34

Ce que je t'explique est la même chose que les messages précédents en prenant une autre démarche mais qui va arriver au même résultat. Que tu considère \(\beta=1\) ou pas dés le départ.
On te dit que les tangentes sont confondues si :
même coefficient directeur : \(-2\alpha = \frac{4}{\beta}\) soit \(\alpha = \frac{-2}{\beta}\) ou \(\beta = \frac{-2}{\alpha}\)
et même ordonnée à l'origine : \(-\alpha^2 = -4 +4ln(\beta)\)
Ensuite soit tu considères que \(\beta = 1\) et tu as \(\alpha\) puis l'équation de la tangente,
soit tu remplaces \(\beta\) par sa valeur en fonction de \(\alpha\) et tu vas avoir à résoudre une équation d'inconnue \(\alpha\) qui correspond à l'équation résolue précédemment.
Lis bien toutes les réponses et tu vas y arriver
SoS-Math(33)
 
Messages: 1825
Inscription: Ven 25 Nov 2016 14:24

Re: Dérivabilité d’une fonction

Messagepar Thomas le Sam 5 Mai 2018 14:39

Bonjour,

a = -2/1 donc a = -2.
ln (1) + 1/1² -1 = 0.

Donc y = 2x ... ( Je ne pense pas)
J'ai beau relire les messages, je ne comprends pas la démarche.
Je désespère de finir un jour cet exercice.
Thomas
 

Re: Dérivabilité d’une fonction

Messagepar SoS-Math(33) le Sam 5 Mai 2018 15:35

Thomas, je pense qu'il y a une petite erreur de signe, j'ai repris une réponse d'un collègue mais je pense qu'une coquille dans un signe s'est glissée.
On reprend plus clairement.
Tangente en \(\alpha\) à \(C_f\) : \(y = f'(\alpha)(x-\alpha)+f(\alpha)\)
ce qui donne : \(y = 2\alpha x -\alpha^2\)

Tangente en \(\beta\) à \(C_g\) : \(y = g'(\beta)(x-\beta)+g(\beta)\)
ce qui donne : \(y = \frac{4}{\beta}x - 4 - 4ln\beta\)
Or \(\beta = 1\) ce qui donne \(y= 4x - 4\) équation de la tangente à \(C_g\) au point d'abscisse 1

Pour que les deux tangentes soient identiques il faut que :
1) \(2\alpha x = 4x\) ce qui donne \(\alpha = 2\)
2) \(\alpha^2 = 4\) ce qui donne \(\alpha = 2\) ou \(\alpha = -2\)
La solution qui convient est \(\alpha = 2\)
Ainsi la tangente à \(C_f\)au point d'abscisse 2 est : \(y= 4x - 4\) qui est la même que celle de \(C_g\) au point d'abscisse 1

Est ce plus clair pour toi ainsi?
SoS-Math(33)
 
Messages: 1825
Inscription: Ven 25 Nov 2016 14:24

PrécédenteSuivante

Retourner vers Forum terminale